
Consistent updates
in Datomic
Gustavo Bicalho

Datomic in a nutshell
• Accumulate-only database - all changes add new datoms

• Good metaphor for this is Git
• Delegates storage to separate service, usually DynamoDB

Querying Datomic

• datomic.api/db returns a Db object

• Db gives us an immutable view of the database in a point in time
• Query with Datalog, the Entity API or access the datoms directly
• Several threads or machines can get Db and query independently

Writing to Datomic

• datomic.api/transact sends a request to the transactor
• Transactor turns it into datoms and add them to the log
• No interactive transactions, all statements are sent at once
• Transactions run serially, must complete quickly

Writing to Datomic - Naive
• Get a Db, run a query, build statements, transact

• Race conditions!

Writing to Datomic - Tx Functions
• Transaction functions are installed in the transactor
• Access the up-to-date snapshot of the database
• Can write stuff to the log or abort by throwing an exception

• Slow transaction functions will clog all writes in the system

Isolation levels

• Atomicity
• Consistency
• Isolation
• Durability

What happens when concurrent transactions
touch the same data?

Serializable Isolation

• Transactions behave as if they were run serially
• Prevents all concurrency issues in a single database
• SQL databases use complex locking to achieve this. Concurrent

transactions that touch the same data either get blocked or abort
• Datomic actually runs every transaction serially!

Snapshot Isolation

• All reads in a transaction see the same version of the database
• Concurrent transactions do not see each other
• Looks a lot like what we get from Datomic’s Db!
• d/transact is serializable, but querying Db is snapshot-isolated
• Allows some concurrency anomalies to happen

Snapshot Isolation - write-write conflicts

• Account starts with $100
• T1 calls subtract-balance! to take $90, writes $10
• T2 calls subtract-balance! to take $75, writes $25
• One of them will be overwritten

Snapshot Isolation - write skew

• Account has no active cards, should have at most 1
• T1 calls create-card!, sees snapshot with no cards, transacts
• T2 does the exact same thing
• We end up with 2 cards

Consistency in Datomic
• We want to do most work using Db queries
• Compute decisions with a snapshot
• Use a tx function to check if nothing changed
• Good data models can simplify this
• The less you read, the less you have to check
• The less you change, the less you have to check

Take advantage of uniqueness checks
• If we register an attribute as unique, Datomic will guarantee that

for us automatically

• Consume an input -> save a new payment, with the

unique :payment/source-id attribute
• If there’s no unique id field in the input, we can build a unique hash

Use :db/cas
• :db/cas is a built-in transaction fn that does compare-and-swap
• Solves write-write conflicts by checking that no concurrent

transaction changed the attribute we’re changing
• Use it to implement state-machines, where we want to ensure valid

transitions

• Installed via transaction or via classpath

• Can query the up-to-date version of the database
• Pure functions that return some tx-data or throw an exception

Custom transaction functions

• Example: purchase-request must have at most one of two child

entities, purchase-approval and purchase-denial
• Write skew could violate this condition

• Check for existence at the serializable level, before inserting

Tx fns - checking for child entities

• Example:
• compute the balance of a bank-account from the debit and

credit entities the belong to it
• Never create a debit if the balance would become negative

• We can do this because our entities are immutable
• Smarter checks relying on domain knowledge

Tx fns - lists of entities

Account lock
• To ensure all updates that relate to a single account are

serialized, use an attribute as a sequential counter
• Update the counter with :db/cas

Wrapping up
• Database as a value is awesome, but not a silver bullet
• Datomic has two different APIs, two distinct isolation levels
• If we think carefully, we can move work between isolation levels,

and get the best of each
• Think about concurrency when writing transactions
• Think about concurrency when designing data models

