—)

(—

]bank

Consistent updates
IN Datomic

Gustavo Bicalho



Datomic in a nutshell

 Accumulate-only database - all changes add new datoms

sentity attribute value X
[ 247 raccount/status :active 1
[ 247 raccount/status :active 2

[ 247 raccount/status :canceled 2

{:db/1d 247
raccount/status :canceled}

* (Good metaphor for this is Git

* Delegates storage to separate service, usually DynamoDB



Querying Datomic

¢ datOmiC . apl/db retums a Db ObjeCt (let [db (datomic.api/db connection)]

; query away!

)

* Db gives us an immutable view of the database in a point in time
* Query with Datalog, the Entity APl or access the datoms directly

e Several threads or machines can get Db and query independently



Writing to Datomic

(let [tx-data [[:db/retract 247 :account/status :active]
[ :db/add 247 :account/status :canceled]]]
(datomic.api/transact connection txdata))

+ :db/add tells us that a new fact i1s true from now on
; :db/retracts tells us that some old fact is no longer true
: Both datoms are created i1n the same transaction

 datomic.api/transact sends a request to the transactor
* [ransactor turns it into datoms and add them to the log
* No Interactive transactions, all statements are sent at once

* [ransactions run serially, must complete quickly



Writing to Datomic - Naive

 (Get a Db, run a query, build statements, transact

(defn cancel-account! [account-1d, connection]
(let [db (datomic.api/db connection)

balance (account-balance db account-1id)]
(1Lf-not (zero? balance)
(throw (ex-info "Nope!" {})
(->> [[:db/add account-id :account/status :canceled]]
(datomic.api/transact connection))))))

e Race conditions!



Writing to Datomic - Tx Functions

e Jransaction functions are installed in the transactor
* Access the up-to-date snapshot of the database

* Can write stuff to the log or abort by throwing an exception

(defn cancel-account! [account-id, connection]

(->> [[:cancel-account account-id
(datomic.api/transact connection

e Slow transaction functions will clog all writes in the system



Isolation levels

e Atomicity
What happens when concurrent transactions

* Consistency touch the same data”

e |solation

e Durability



Serializable Isolation

* [ransactions behave as ifthey were run serially

* Prevents all concurrency issues in a single database

* SQL databases use complex locking to achieve this. Concurrent
transactions that touch the same data either get blocked or abort

* Datomic actually runs every transaction serially!



Snapshot |solation

* All reads in a transaction see the same version of the database

e Concurrent transactions do not see each other

* [ ooks a lot like what we get from Datomic’s Db!

 d/transact is serializable, but querying Db is snapshot-isolated

* Allows some concurrency anomalies to happen



Snapshot Isolation - write-write conflicts

(defn subtract-balance! [account-id, amount, connection]
(let [db (d/db connection)
current-balance (account-balance account-1d db)

new-pbalance (- current-balance amount)
tx-data [[ :db/add account-id :account/balance new-balance]]]

(d/transact connection txdata)))

e Account starts with $100

e T1 calls subtract-balance! to take $90, writes $10

e T2 calls subtract-balance! to take $75, writes $25

e One of them will be overwritten



Snapshot Isolation - write skew

(defn create-card! [account-id connection]

(let [db (d/db connection)

may-create-card? (not (has-active-cards? account-id db)]

(when may-create-card?
(d/transact! connection (new-card-tx-data account-id))))))

 Account has no active cards, should have at most 1
 [1 calls create—card!, sees snapshot with no cards, transacts
* [2 does the exact same thing

 We end up with 2 cards



Consistency in Datomic

* We want to do most work using Db queries
 Compute decisions with a snapshot

* Use a tx function to check it nothing changed
 (Good data models can simplify this

* [he less you read, the less you have to check

* [he less you change, the less you have to check



Take advantage of unigueness checks

e |t we reqgister an attribute as unique, Datomic will guarantee that

for us automatically

s schema for unique attribute
{:db/1dent :payment/source-1d

:db/valueType :db.type/uuid
:db/cardinality :db.cardinaltity/one
:db/unique :db.unique/value}

e Consume an input -> save a new payment, with the
unigue :payment/source-id attribute

e |t there's no unigue id field in the input, we can build a unigue hash



Use :db/cas

 :db/cas is a built-in transaction fn that does compare-and-swap

* Solves write-write conflicts by checking that no concurrent
transaction changed the attribute we're changing

 Use it to Implement state-machines, where we want to ensure valid

transitions

(defn block-active-account! [account-id connection]
s Wwitll only change status to :blocked if i1t s

; tactive at the tume of the transaction
(->> [[:db/cas account-id :account/status :active :blocked]]
(d/transact connection)))




Custom transaction functions

* |nstalled via transaction or via classpath

(defn inc-attr [db entity-id attribute]

(let [entity (d/entity db entity-1id)
current-val (get entity attribute 0)
new-val (inc current-val)]

s returns extra tx-data
[[:db/add entity-id attribute new-vall]]))

(d/transact conn [[:1nc-attr 37 :account/foo-count]])

 Can query the up-to-date version of the database

* Pure functions that return some tx-data or throw an exception



Tx fns - checking for child entities

« Example: purchase-request must have at most one of two child
entities, purchase—approval and purchase—-denial

e \Write skew could violate this condition

(defn purchase-request-still-pending [db purchase-req-1id]
; use this whenever we create an approval or a dental
(let [request (d/entity db purchase-req-1id)

approval (first (:purchase-approval/_request request))
denial (first (:purchase-denial/_request request))]
(when (or approval dential)
(throw (ex-info "Purchase not pending!" {})))))

* Check for existence at the serializable level, before inserting



Tx fns - lists of entities

* Example:
 compute the balance of a bank-account from the debit and
credit entities the belong to it

 Never create a debit if the balance would become negative

(defn debit-count-equals [db, account-id, expected-number-of-debits]
(let [account (datomic.api/entity db account-1d)

number-of-debits (count (:debit/ _account account)
(when-not (= number-of-debits expected-number-of-debit
(throw (ex-info "Number of debits changed"{})))))

e \We can do this because our entities are iImmutaple

* Smarter checks relying on domain knowledge



Account lock

* Jo ensure all updates that relate to a single account are
serialized, use an attribute as a sequential counter

 Update the counter with :db/cas

(defn inc-counter-tx-data [account-id db]
(let [current-val (:account/counter (datomic.api/entity db account-id))]
[[:db/cas account-1d :account/counter current-val (inc counter)]]))

(defn create-credit! [user-id amount conn]
(let [db (d/db conn)]
(d/transact conn (concat (make-credit-tx-data account-id amount d
(1nc-counter-tx-data account-1d c

(defn create-debit! [user-id amount conn]
(let [db (d/db conn)]
(d/transact conn (concat (make-debit-tx-data account-id amount db)
(1nc-counter-tx-data account-1d db))))))




Wrapping up

 Database as a value is awesome, but not a silver bullet

* Datomic has two different APIs, two distinct isolation levels

* |t we think carefully, we can move work between isolation levels,
and get the best of each

* [hink about concurrency when writing transactions

* Think about concurrency when designing data models



